This tiny reproduction of Girl With a Pearl Earring is “painted” with light

An illustration of how millions of nanopillars were used to control both the color and intensity of incident light, projecting a faithful reproduction of Johannes Vermeer's <em>Girl With a Pearl Earring</em>.

Enlarge / An illustration of how millions of nanopillars were used to control both the color and intensity of incident light, projecting a faithful reproduction of Johannes Vermeer's Girl With a Pearl Earring. (credit: T. Xu/Nanjing University)

Scientists have fabricated tiny "nanopillars" capable of transmitting specific colors of light, at specific intensities, which hold promise for improved optical communication and anti-counterfeit measures for currency. For proof of concept, they decided to digitally reproduce Dutch master Johannes Vermeer's famous painting Girl With a Pearl Earring—just painted in light instead of pigment. They discussed their work in a recent paper published in the journal Optica.

“The quality of the reproduction, capturing the subtle color gradations and shadow details, is simply remarkable,” said co-author Amit Agrawal, a researcher with the National Institute of Science and Technology (NIST). “This work quite elegantly bridges the fields of art and nanotechnology.”

Nature abounds with examples of structural color. The bright colors in butterfly wings don't come from any pigment molecules but from how the wings are structured, for instance. The scales of chitin (a polysaccharide common to insects) are arranged like roof tiles. Essentially, they form a diffraction grating, except photonic crystals only produce certain colors, or wavelengths, of light while a diffraction grating will produce the entire spectrum, much like a prism 

Read 10 remaining paragraphs | Comments